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Abstract 

A new derivation of a trial structure of the sigma phase 
is described. It is based on the stochastic method in a 
form which is particularly useful in the derivation of 
trial structures of high symmetry, provided that the radii 
of the component metals are of the appropriate relative 
magnitudes. In this form the initial assumption is made 
that the structure is tetrahedrally close-packed and that 
the coordination polyhedra are normal with coordina- 
tion numbers 12, 14, 15 and 16, respectively. These 
restrictions are first invoked in the search for the correct 
structural arrangements along the symmetry axes. Only 
those arrangements are considered which have small 
packing strains along these axes when calculated using 
the metallic radii for coordination number 12. 

1. Introduction 

The crystal structure of the sigma phase has tetragonal 
symmetry with the space group P42/mnm. The structure 
is tetrahedrally close-packed and the coordination 
polyhedra are all of the 'normal' type with coordination 
numbers 12, 14 and 15 (Bergman & Shoemaker, 1954). 
The polyhedron with coordination number 16 is not 
utilized. It should, therefore, be possible to derive a 
trial structure using the method recently described by 
Bergman and used by him in the derivation of a trial 
structure of the NaCd 2 compound (Bergman, 1996). 
The method is very simple and will now be described. 

The initial assumption is made that the structure is 
tetrahedrally close-packed and that the coordination 
polyhedra are all of the normal type with coordination 
number 12, 14, 15 or 16 (Frank & Kasper, 1958, 1959). 
The radius ratios of the component metals must, of 
course, be in the appropriate range. The metallic radii 
for coordination number 12 may be used. 

The structure determination begins with the search 
for the correct structural arrangement along one of the 
symmetry axes. This arrangement is usually that with 
the smallest packing strain along the axis. The choice of 
symmetry axis should be such as to exploit other 
symmetry elements as much as possible. A good choice 
is an axis which is perpendicular to a mirror plane or 
lies in a mirror plane, or, better still, both. The trial 
structure can sometimes be completed without much 
difficulty when only one of the symmetry axes is 
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investigated in this way. This was the case in the 
structure determination reported here. A corresponding 
investigation of a second, possibly even a third, axis 
may, however, often be necessary. When the structural 
arrangements along the symmetry axes have been 
found, it is often quite simple to find the locations of 
the remaining atoms in the unit cell. 

The unit-cell dimensions and the space group must be 
known. When there is more than one possible space 
group, the correct one can be selected with considerable 
confidence in a manner to be described later. 

As will be shown in this paper, the correct trial 
structure of the sigma phase can be derived with great 
ease using this method. As the structure is relatively 
simple, the method is not put to a very severe test. Its 
successful application to the problem of the much more 
complicated NaCd2 structure (Bergman, 1996) is, 
therefore, far more significant. This application is also 
more instructive in its use. The method is described in 
considerable detail in the referenced paper on the 
NaCd 2 structure. The ease with which the trial structure 
of the sigma phase can be found with the use of this 
method is, however, also evidence of its usefulness. 

2. Determination of the trial structure 

The unit-cell dimensions used in this determination are 
those of the sigma phase with a composition given 
approximately by the composition Fe8Cr 7 (Bergman & 
Shoemaker, 1954), 

a = 8.7995, c = 4.5442 A. 

The metallic radii for coordination number 12 are 1.26 
and 1.28A for iron and chromium, respectively 
(Pauling, 1960). Because the radii are so similar, the 
weighted average of 1.27]k can be used. The trial 
structure cannot then differentiate between the two 
types of atoms in the different crystallographic posi- 
tions. 

The space groups _requiring consideration are 
P42/mnm, P42nm and P4n2 (Bergman & Shoemaker, 
1954). Of these, the first is the most likely and is 
assumed to be correct. This matter will be discussed 
further in a later section. 

In space group P42/mnm there is a twofold rotation 
axis along the c axis at (0, 0, z) and a 42 axis at (0, ½, z) 
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(Hahn, 1995). The search for a trial structure is more 
efficient if it begins with the determination of the atomic 
arrangement along the twofold axis, because there are 
two diagonal mirror planes through (0, 0, z) which 
restrict the possible orientations of all coordination 
polyhedra which have their centers on the axis. 

2.1. The arrangement along the twofold rotation axis 

The arrangement along the twofold rotation axis must 
be a string of single atoms and dyads of atoms. The 
centroids of the dyads are located on the axis with the 
atoms in each dyad in contact with each other. The dyad 
axes are perpendicular to the twofold axis. The dyads 
can have two orientations differing by a rotation of 90 °. 
Each dyad must be located on one of the mirror planes 
through (0, 0, z). 

It is readily seen that, with the given c dimension of 
the unit cell, the best packing along the axis is obtained 
when single atoms alternate with dyads. The packing 
strain is 3.2% (stretching). A single atom may then be 
placed either at (0, 0, 0) or at (0, 0, !) All other z 2 " 
coordinates can be rejected, because there are also 
mirror planes coinciding with and parallel to the xy 
plane through the points (0, 0, 0) and (0, 0, !) respec- 2 '  
tively. The first position is arbitrarily chosen. The 
corresponding point set is labeled A in Table 1. A dyad 
will then be located with its centroid at (0, 0, i) The 2 "  
corresponding point set is labeled B in Table 1 and all 
the dyads are then in the same rotational orientation 
about the axis. All of them could also be rotated 90 ° 
about the axis, but this would not lead to a different 
structural arrangement. The coordinates of point set B 
could also have been given as (x, -x ,  ½) with x equal to 
0.102. 

Table 1. Trial structure parameters 

The space group (no. 136) is P42/mnm (Hahn, 1995). Refined 
structure parameters (Bergman & Shoemaker, 1954) are shown in 
parentheses. 

Point set x y z 

A 2(a) 0, 0, 0 
B 4(f)  x,x,  0 0.398 (0.3981) 
C 8(i) x ,y ,  0 0.483 (0.4632) 0.129 (0.1316) 
D 8(i) x ,y,  0 0.721 (0.7376) 0.075 (0.0653) 
E 8(j) x,x ,z  0.177 (0.1823) 0.250 (0.2524) 

atom rings, one in each plane, are then formed and the 
shell becomes a coordination number 14 shell (shells 
with coordination number 12, 15 and 16 cannot be 
accommodated). When the shell is completed, the 
approximate coordinates of the atoms in set C of 
Table 1 are found. This completes the trial structure. 

Here, it should be noted that since the symmetry of 
the points in set E is m, and all the four coordination 
polyhedra have a mirror plane, they are all candidate 
coordination polyhedra, even when deformed (with 
preservation of the mirror plane), unless it can be shown 
that one or more must be rejected because of spacial 
restrictions imposed by atoms already placed (atoms in 
sets A, B, D and E). 

3. Discussion 

The trial structure agrees quite well with the refined 
structure (Bergman & Shoemaker, 1954) and can, 
therefore, be used as a starting point for a refinement. 
As was mentioned by Bergman (1996) in an earlier 

2.2. The location of the remaining atoms in the unit cell 

The atoms in set A are located at points which have 
symmetry mmm. Its coordination polyhedron must then 
be of the coordination number 12 type (icosahedron), 
because among the four coordination polyhedra only 
this polyhedron has three mirror planes at right angles 
to each other. When the polyhedron is completed, the 
approximate coordinates of two more point sets are 
obtained. These sets are shown as point sets D and E in 
Table 1. The z coordinate of point set E must be 
approximately ¼, because there is compressional strain 
(11.8%) along the straight lines parallel to the z axis 
through the atoms in this set. 

When the corresponding group of atoms centered at 
(½ ½, !), which is rotated 90 ° about the z axis, is 

' 2 

completed, the arrangement becomes as shown in Fig. 
1. On examination of Fig. 1 it is seen that ten of the 
atoms in the coordination shell of the atoms in set E are 
already in place. Four of them are in the plane z = 0 and 
four in the plane z = ½. The shell can be completed by 
adding two atoms in each of these two planes. Two six- 

Fig. 1. Arrangement after completion of icosahedra. Filled circles: 
atoms in the planes z = 0, 1 . . . .  ; open circles: atoms in the planes 
z = ~ , . .  " slashed circles: atoms near the planes z = ~ , 3  . . . . .  
Partial projection of the unit cell on (0,0,1). 
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paper, the T phase and R phase structures could also 
have been obtained by the use of the same method. It is 
perhaps possible that several of the other now known 
tetrahedrally close-packed structures could have been 
found with less effort using this method. 

The space group was assumed to be P42/mnm 
following the rule that among the possible space groups, 
the correct one has the largest number of points in the 
general position (the number of points is 16, 8 and 8, 
respectively, for the three possible space groups). In 
intermetallic compounds this rule seems to hold with 

few exceptions. That this is the case may simply be a 
reflection of the tendency of metals to form structures of 
high symmetry. This tendency is well known and has 
been discussed by Laves (1956). The work done by 
Yakel (1983) provides further evidence that the space 
group assumed in this investigation is the correct one. 

It is interesting that among the 23 tetrahedrally close- 
packed structure types identified by Shoemaker & 
Shoemaker (1988) only two do not follow the rule 
discussed above and these two both contain silicon in 
the examples given. Silicon is not a metal and its crystal 
structure is of the diamond type. This may explain why 
the rule fails. 

Fig. 2. The completed trial structure. Partial projection of the unit cell 
on (0, 0, 1). 
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